New Synthetic Route to $\mathbf{N}, \mathbf{N}^{\prime}$-Diaminohydantoins from Hydrazido Pyridinium Salts

Claudie Florac, Philippe Le Grel, Michèle Baudy-Floc'h and Albert Robert*
Groupe de Recherches de Chimie Structurale, Unité de Recherches associée au C.N.R.S., U.R.A. DO704, Université de Rennes, Campus de Beaulieu, F-35042 Rennes Cédex, France

Abstract

x-Bromoarylacetohydrazides were converted by pyridine into the corresponding arylacetylhydrazinopyridinium salts. Treated with triethylamine, these pyridinium salts afford 4-aryl-1,3diaminohydantoins. The study of the mechanism of this unexpected reaction lead us to extend its scope to 4 -arylhydantoins bearing two different substituted amino groups on nitrogens 1 and 3.

N, N^{\prime}-Diaminohydantoins are precursors of α-hydrazino acids, exhibiting strong biological activity. ${ }^{1-4}$ However, to the best of our knowledge, only one synthetic route to N, N^{\prime}-diaminohydantoins was described ${ }^{5.6}$ before our preliminary communication which dealt with the preparation of N, N^{\prime}-diaminohydantoins from hydrazido pyridinium salts. ${ }^{7}$

We now extend the scope of the reaction to the preparation of hydantoins substituted by two different N -amino groups and propose a mechanism for this reaction.

Results and Discussion

The intermediates $\mathbf{3 , 4}$ and 5 shown in Scheme 1 seem likely for the following reasons: (a) The formation of a pyridinium ylide or its tautomeric form 3 from a pyridinium salt 2 , under basic conditions, is well documented; ${ }^{8,9}(b)$ we postulate that the

Scheme 1 Reagents and conditons: i, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ (3 equiv.), MeCN, reflux, 4 h ; ii, NEt_{3} (2 equiv.), MeCN, reflux, 4 h
pyridinium betaine 3 cyclizes into the N-aminoaziridinone 4 or, as suggested by one referee, its opened form 4^{\prime}. The elimination of pyridine during the course of this reaction is similar to the elimination of a halide ion in the Favorskii rearrangement where a zwitterionic opened cyclopropanone has been proposed. ${ }^{10}$ The elimination of pyridine from 2 is also similar to the elimination of a bromide ion from $1\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\right.$ COPh) in basic media. Whilst not isolated, the formation of an N-aminoaziridinone intermediate $4\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \quad \mathrm{R}=\right.$ COPh) is observed by ${ }^{1} \mathrm{H}$ NMR as a labile intermediate. ${ }^{11}$ The appearance of a signal at $\delta 5.80$ is more attributable to 4 than to the opened form 4^{\prime}. Nevertheless 4^{\prime} may be the reactive intermediate trapped by nucleophilic reagents. However, we have not been able to trap the dipole 4^{\prime} by dipolarophilic reagents. In fact, we observed that like 1 , the hydrazidopyridinium salt 2 ($\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$) reacted with methanol in the presence of triethylamine to give $8\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\right.$ $\mathrm{CO}_{2} \mathrm{Me}$) (Scheme 2). (c) The reaction between the aziridinone 4 or the dipolar form 4^{\prime} and the betaine 3 is the expected nucleophilic addition, ${ }^{11}$ leading to the adduct 5 . The formation of such an intermediate 5 was proved for $5\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right.$, $\mathrm{R}=\mathrm{COPh}$) which was stable enough to be isolated as a salt and characterized by ${ }^{1} \mathrm{H}$ NMR and IR spectra (Experimental section). We further demonstrated that $5 \mathrm{HBr}\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right.$, $\mathrm{R}=\mathrm{COPh}$) gave the N-aminohydantoin $6\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right.$, $\mathrm{R}=\mathrm{COPh}$) when treated with triethylamine in boiling acetonitrile.

$$
\begin{array}{r}
2 \xrightarrow{\mathrm{i}} 4 \text { or } 4^{\prime} \xrightarrow{\mathrm{ii}} \mathrm{ArCH}(\mathrm{OMe}) \mathrm{CONHNHR} \\
8 \\
\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)
\end{array}
$$

Scheme 2 Reagents and conditions: i, NEt_{3} (1 equiv.); ii, MeOH , reflux, 1 h

The key step in Scheme 1 is the nucleophilic ring opening of the aziridinone $\mathbf{4}$ by the betaine 3. Furthermore, $\mathbf{3}$ and $\mathbf{4}$ arise from the same starting pyridinium salt 2 . As aziridinone 4 can also be generated from α-halogenohydrazide $1,{ }^{11}$ and as bromide is a better leaving group than pyridine, we postulate that by mixing the α-bromohydrazide 1 and the hydrazidopyridinium salt $\mathbf{2}$ in the presence of triethylamine, the betaine $\mathbf{3}$ will be formed exclusively from 2 while the aziridinone 4 will arise mostly from the α-bromohydrazide derivative 1 (Scheme 3). To check the validity of this and also to prepare hydantoins substituted by two different amino groups, the reactions described in Scheme 3 were performed, and the results were in perfect agreement with our proposed mechanism. Note that the aryl substituent in the obtained hydantoin 9 comes from the starting α-bromohydrazide 1 while the $\mathrm{N}-\mathrm{NHR}^{2}$ fragment

Scheme 3 Reagents and conditions: i, NEt_{3} (2 equiv.), MeCN, reflux, 4 h
arises from the pyridinium salt 2 . The pyridinium ylide 7 eliminated in the last step of the reaction is not stable enough to be isolated and characterized.

Conclusions

As our starting materials, the α-halogenohydrazides $\mathbf{1}$, are easily prepared from gem dicyano epoxides, ${ }^{12}$ the described reaction is a convenient route to N, N^{\prime}-diaminohydantoins. The analysis of the mechanism of this unexpected reaction leads to hydantoins substituted in a predictable manner, by two different N-amino groups.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded at 80 MHz on a Bruker WP 80 spectrometer and ${ }^{13} \mathrm{C}$ NMR spectra at 75 MHz on Bruker AM 300 spectrometer with tetramethylsilane as internal reference. Mass spectra were determined with a Varian Mat 311 spectrometer. IR spectra were determined with a Perkin-Elmer 225 or 1420 spectrometer. M.p.s were measured on a Kofler hotstage apparatus.

Hydrazino Pyridinium Salts 2.-x-Halogenohydrazide 1 (10 mmol) and pyridine (30 mmol) were allowed to react in boiling $\mathrm{MeCN}\left(50 \mathrm{~cm}^{3}\right)$. After the mixture had been cooled at room temperature, the precipitated salt $\mathbf{2}$ was recovered and recrystallized from ethanol ($\mathrm{R}=\mathrm{COPh}, \mathrm{COMe}$) or from methanol $(\mathrm{R}=$ $\mathrm{CO}_{2} \mathrm{Me}$).
$\mathrm{N}-[\alpha-($ Benzoylhydrazinocarbonyl)benzyl]pyridinium bromide. $2\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=\mathrm{COPh}\right.$). Yield 80%; m.p. $235^{\circ} \mathrm{C}$ (Found: C , $58.6 ; \mathrm{H}, 4.35 ; \mathrm{Br}, 19.3 ; \mathrm{N}, 9.85 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 58.26$; $\mathrm{H}, 4.37 ; \mathrm{Br}, 19.42 ; \mathrm{N}, 10.19 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3150 \mathrm{~m}(\mathrm{NH})$, 1712 s and $1660 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 7.57(11 \mathrm{H}, \mathrm{m}$, $\mathrm{ArCH}),{ }^{13} 7.97\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.47\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and 8.97 $\left(2 \mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right.$.

N -[α-(Benzoylhydrazinocarbonyl)-p-methylbenzyl]pyridinium bromide. $2\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}\right)$. Yield 84%; m.p. $>260{ }^{\circ} \mathrm{C}$ (Found: C, 59.55; H, 4.7; Br, 18.47; N, 9.9. $\mathrm{C}_{21^{-}}$ $\mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2}$ requires C, $59.15 ; \mathrm{H}, 4.69 ; \mathrm{Br}, 18.78 ; \mathrm{N}, 9.86 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3160 \mathrm{br}(\mathrm{NH}), 1715 \mathrm{~s}$ and $1678 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}^{-}}$
$\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.57(10 \mathrm{H}, \mathrm{m}, \mathrm{ArCH})$, $7.98\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.49\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $8.97(2 \mathrm{H}, \mathrm{d}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$).
$\mathrm{N}-[\alpha$-(Benzoylhydrazinocarbonyl)-p-chlorobenzyl]pyridinium bromide. $2\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}\right)$. Yield 70%, m.p. $>260^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 54.05 ; \mathrm{H}, 3.8 ; \mathrm{Br}, 17.51 ; \mathrm{Cl}, 8.11 ; \mathbf{N}, 9.4 ; \mathrm{M}^{+}$, 365.976. $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrClN}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 53.75$; $\mathrm{H}, 3.80$; Br 17.91 ; $\mathrm{Cl}, 7.95 ; \mathrm{N}, 9.40 \% ; M, 365.9770) ; v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3160 \mathrm{br}(\mathrm{NH})$, 1715 s and $1671 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 7.59(10 \mathrm{H}, \mathrm{m}$, ArCH), $8.06\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.55\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $8.97(2$ $\mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$).
$\mathrm{N}-[\alpha-($ Benzoylhydrazinocarbonyl)-o-chlorobenzyl]pyridinium bromide. $2\left(\mathrm{Ar}=o-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}\right)$. Yield 90%, m.p. $>260^{\circ} \mathrm{C}$ (Found: C, 53.9; H, 3.75; Br, 17.61; Cl, 8.03; N, 9.35; $\mathrm{M}^{+}, 365.976$). $\mathrm{C}_{20} \mathrm{H}_{1}, \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{BrCl}$ requires $\mathrm{C}, 53.75 ; \mathrm{H}, 3.80 ; \mathrm{Br}$, $17.91 ; \mathrm{Cl}, 7.95 ; \mathrm{N}, 9.40 \% ; M, 365.9770)$; $v_{\max }$ (Nujol)/ $/ \mathrm{cm}^{-1} 3120 \mathrm{br}$ $(\mathrm{NH}), 1717 \mathrm{~s}$ and $1665 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 7.65$ (10 $\mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 8.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.55\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and 8.95 ($2 \mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$).

N-[x-(Benzoylhydrazinocarbonyl)-p-nitrobenzyl]pyridinium bromide. $2\left(\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}\right)$. Yield 71%, m.p. $>260^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 52.45 ; \mathrm{H}, 3.85 ; \mathrm{Br}, 17.5 ; \mathrm{N}, 11.9 . \mathrm{C}_{20^{-}}$ $\mathrm{H}_{17} 7 \mathrm{BrN}_{4} \mathrm{O}_{4}$ requires C, $52.63 ; \mathrm{H}, 3.73 ; \mathrm{Br}, 17.32 ; \mathrm{N}, 12.29 \%$); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3140 \mathrm{br}(\mathrm{NH}), 1713 \mathrm{~s}$ and $1655 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 7.75(10 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 8.27(2 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.67\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $9.15\left(2 \mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.
$\mathrm{N}-[x$-(Benzoylhydra-inocarbonyl) $-2,4$-dichlorobenzyl]pyridium bromide. 2 ($\mathrm{Ar}=2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}=\mathrm{COPh}$). Yield 85%, m.p. $224^{\circ} \mathrm{C}$ (Found: C, 49.85; H, 3.4; Br, 16.5; Cl, 14.35; N, 8.7. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 49.90 ; \mathrm{H}, 3.33 ; \mathrm{Br} 16.63 ; \mathrm{Cl}$, $14.76 ; \mathrm{N}, 8.73 \%$); $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3160$ br (NH), 1710 s and $1655 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 7.50(9 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 7.95$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.61\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $8.87\left(2 \mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.

N -[x-(Benzoylhydrazinocarbonyl)-2,3-dichlorobenzyl]pyridinium bromide. $2\left(\mathrm{Ar}=2,3-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}=\mathrm{COPh}\right)$. Yield 90%, m.p. $>260^{\circ} \mathrm{C}$ (Found: C, $49.55 ; \mathrm{H}, 3.3 ; \mathrm{Br}, 16.35 ; \mathrm{Cl}, 14.8 ; \mathrm{N}$, 8.4. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $49.90 ; \mathrm{H}, 3.33 ; \mathrm{Br} 16.63 ; \mathrm{Cl}$, 14.76; $\mathrm{N}, 8.73 \%$); $v_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 3140$ br (NH), 1718 s and 1668s (CO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 7.78(9 \mathrm{H}, \mathrm{m}, \mathrm{ArCH})$, $8.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.55\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $8.97(2 \mathrm{H}, \mathrm{d}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$).
$\mathrm{N}-[x$-(Ben-oylhydrazinocarbonyl)-3,4-dichlorobenzyl]pyridinium bromide. 2 ($\mathrm{Ar}=3,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}=\mathrm{COPh}$). Yield 85%, m.p. 260 C (Found: C, 49.85; H, 3.3; Br, 16.45; Cl, 14.65; N, 8.6. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $49.90 ; \mathrm{H}, 3.33 ; \mathrm{Br} 16.63 ; \mathrm{Cl}$, $14.76 ; \mathrm{N}, 8.73 \%$); $v_{\text {max }}$ (Nujol)/ $\mathrm{cm}^{-1} 3130 \mathrm{br}$ (NH), 1715s and $1678 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 7.52(9 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 8.01$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.50\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $9.07\left(2 \mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.
N -[x-(Acetylhydrazinocarbonyl)-o-chlorobenzyl]pyridinium bromide. 2 ($\mathrm{Ar}=o-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COMe}$). Yield 80%, m.p. $244{ }^{\circ} \mathrm{C}$ (Found: C, 46.6; H, 3.85; Br, 20.41; Cl, 9.25; N, 10.9. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrClN}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 46.81 ; \mathrm{H}, 3.90 ; \mathrm{Br} 20.81 ; \mathrm{Cl}, 9.23$; $\mathrm{N}, 10.92 \%$) $\mathfrak{v}_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 3160$ br (NH), 1718 s and 1682 s $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.50(5 \mathrm{H}, \mathrm{m}$, ArCH), $8.20\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.60\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and 8.95 (2 $\mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$).

N -[x-(Acetylhydrazinocarbonyl)-2,3-dichlorobenzyl]pyridinium bromide. $2\left(\mathrm{Ar}=2,3-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}=\mathrm{COMe}\right)$. Yield 90%, m.p. $>260^{\circ} \mathrm{C}$ (Found: C, 42.55; H, 3.3; Br, 18.8; Cl, 16.95; N, 6.55. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 42.96 ; \mathrm{H}, 3.34 ; \mathrm{Br} 19.09 ; \mathrm{Cl}$, 16.94; $\mathrm{N}, 6.68 \%$); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3120 \mathrm{br}$ (NH); 1720s and $1680 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.72(4$ $\mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 8.20\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.66\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $8.95\left(2 \mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.
N - $[x$-(Methoxycarbonylhydrazinocarbonyl)benzyl]pyridinium bromide. 2 ($\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$). Yield 65%, m.p. 152 C (Found: C, 49.0; H, 4.35; Br, 21.45; N, 11.65. $\mathrm{C}_{15}{ }^{-}$ $\mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{3}$ requires C, 49.18; $\mathrm{H}, 4.37$; $\mathrm{Br} 21.86 ; \mathrm{N}, 11.47 \%$; ; $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3130 \mathrm{br}(\mathrm{NH}), 1735 \mathrm{~s}$ and 1695 s (CO); $\delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.55(6 \mathrm{H}, \mathrm{m}, \mathrm{ArCH})$, $8.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.55\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $8.97(2 \mathrm{H}, \mathrm{d}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$).
$\mathrm{N}-[\mathrm{x}$-Methoxycarbonylhydrazinocarbonyl)-p-methylbenzyl]p.ridinium bromide. $2\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$. Yield 92%, m.p. $234{ }^{\circ} \mathrm{C}$ (Found: C, 50.8; H, 4.7; Br, 21.35; N, 11.45. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{3}$ requires C, $50.53 ; \mathrm{H}, 4.74 ; \mathrm{Br} 21.05 ; \mathrm{N}, 11.05 \%$); $v_{\text {max }}($ Nujol $) / \mathrm{cm}^{-1} 3170 \mathrm{br}$ (NH), 1741s and 1705s (CO); $\dot{\delta}_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 8.04\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.55(1 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $8.92\left(2 \mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.
N -[x-(Methoxycarbonylhydrazinocarbonyl)-p-chlorobenzyl]p.ridinium bromide. $2\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$. Yield $80^{\circ} \%$, m.p. $252{ }^{\circ} \mathrm{C}$ (Found: C, $44.85 ; \mathrm{H}, 3.65 ; \mathrm{Br}, 19.55 ; \mathrm{Cl}, 8.9 ; \mathrm{N}$, 10.4. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrClN}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 44.94 ; \mathrm{H}, 3.74 ; \mathrm{Br}, 19.97 ; \mathrm{Cl}$, $8.86 ; \mathrm{N}, 10.48 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3170 \mathrm{br}(\mathrm{NH}), 1740$ s and 1725s (CO): $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $7.57(5 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}), 8.07\left(2 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right), 8.57\left(1 \mathrm{H}, \mathrm{t}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $8.95\left(2 \mathrm{H} . \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.

N-[(3-Benzoylamino-5-benzoylhydrazino-2,5-dioxo-1,4-di-ptolyl) $\mathbf{- 3}$-azapentyl] pyridinium Bromide $5 \cdot \mathrm{HBr}\left(\mathrm{Ar}=p-\mathrm{MeC}_{6}-\right.$ $\left.\mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}\right)$.-Hydrazino pyridinium salt $2(\mathrm{Ar}=p-\mathrm{Me}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}\right)(10 \mathrm{mmol})$ and $\mathrm{NEt}_{3}\left(2 \mathrm{~cm}^{3}\right)$ were heated under reflux in acetonitrile $\left(50 \mathrm{~cm}^{3}\right)$ for 4 h . The precipitate of $5 \cdot \mathrm{HBr}\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}\right)$ was isolated, filtered and washed with acetone and ether. Yield 9%, m.p. $>260{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3200 \mathrm{br}(\mathrm{NH}), 1714 \mathrm{~s}, 1677 \mathrm{~s}$ and 1660 s (CO); $\delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.12$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.02\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Ar}, \mathrm{ArCH}\right.$ and $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ and $9.16(2$ $\mathrm{H}, \mathrm{d}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$).

Thermolysis of the Salt $5 \cdot \mathrm{HBr}$.-The salt $5 \cdot \mathrm{HBr}(\mathrm{Ar}==p-$ $\mathrm{Me}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}$) and NEt_{3} were thermolysed in acetonitrile for 4 h . The hydantoin 6 ($\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}$) was obtained and characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and by TLC on silica gel Merck 60 (eluent, ether-light petroleum, 2:1; $R_{\mathrm{f}} 0.57$).
$\mathrm{N}, \mathrm{N}^{\prime}$-Diaminohydantoins 6.-Hydrazido pyridinium bromide

2 (10 mmol) and $\mathrm{NEt}_{3}\left(2 \mathrm{~cm}^{3}\right)$ were heated under reflux in acetonitrile $\left(50 \mathrm{~cm}^{3}\right)$ for 4 h . After evaporation of acetonitrile ($30 \mathrm{~cm}^{3}$), the residue was diluted with water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane. Evaporation of the extract then gave the N, N^{\prime}-diaminohydantoin 6 as a solid which was recrystallized from benzene.

1,3-Dibenzoylamino-5-phenylimidazolidine-2,4-dione $6(\mathrm{Ar}=$ $\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=\mathrm{COPh}$). Yield 84%, m.p. $178{ }^{\circ} \mathrm{C}$ (Found: C, $66.4 ; \mathrm{H}$, $4.35 ; \mathrm{N}, 13.6 \% ; \mathrm{M}^{+}, 414.133 . \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 66.67 ; \mathrm{H}$, 4.35; N, 13.53; M, 414.1328); $v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3200 \mathrm{br}$ (NH), $1805 \mathrm{w}, 1740 \mathrm{~s}$ and $1655 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and 7.40 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$).

1,3-Dibenzoylamino-5-p-chlorophenylimidazolidine-2,4-dione 6($\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}$). Yield 75%, m.p. $182{ }^{\circ} \mathrm{C}$ (Found: C, $61.45 ; \mathrm{H}, 3.8 ; \mathrm{Cl}, 7.9 ; \mathrm{N}, 12.35 ; \mathrm{M}^{+}, 448.094 . \mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{4}$ requires C, 61.54; H, 3.79; Cl, 7.91; N, 12.49; M^{+}, 448.0938); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3220 \mathrm{br}(\mathrm{NH}), 1800 \mathrm{w}, 1735 \mathrm{~s}$ and 1665s (CO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.52(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.40(14 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

1,3-Dibenzoylamino-5-p-tolylimidazolidine-2,4- dione 6 ($\mathrm{Ar}=$ $p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{COPh}$). Yield 60%, m.p. $256{ }^{\circ} \mathrm{C}$ (Found: C , 67.05; $\mathrm{H}, 4.6 ; \mathrm{N}, 13.25 \%, \mathrm{M}^{+}, 428.148 . \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C , $67.29 ; \mathrm{H}, 4.67 ; \mathrm{N}, 13.08 ; M, 428.1484) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ $3240 \mathrm{br}(\mathrm{NH}), 1812 \mathrm{w}, 1752 \mathrm{~s}$ and $1655 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $5.31(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $7.40(14 \mathrm{H}$, m, Ar).

1,3-Dimethoxycarbonylamino-5-phenylimidazolidine-2,4-dione $6\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$. Yield 55%, m.p. $148{ }^{\circ} \mathrm{C}$ (Found: C, 48.15; H, 4.35; N, 17.3; M ${ }^{+}$, 322.091. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires $\mathrm{C}, 48.45 ; \mathrm{H}, 4.35 ; \mathrm{N}, 17.39 ; M, 322.0913$); $v_{\text {max }}-$ (Nujol)/ $\mathrm{cm}^{-1} 3320 \mathrm{br}$ and $3270 \mathrm{br}(\mathrm{NH}), 1810 \mathrm{w}, 1755 \mathrm{~s}, 1730 \mathrm{~s}$ and $1710 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 5.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.
5-p-Chlorophenyl-1,3-dimethoxycarbonylaminoimidazolidine-2,4-dione 6 ($\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$). Yield 60%, m.p. $190^{\circ} \mathrm{C}$ (Found: C, $43.8 ; \mathrm{H}, 3.7 ; \mathrm{Cl}, 10.00 ; \mathrm{N}, 15.6 ; \mathrm{M}^{+}, 356.051$. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{6}$ requires $\mathrm{C}, 43.76 ; \mathrm{H}, 3.65 ; \mathrm{Cl}, 9.96 ; \mathrm{N}, 15.71 ; M^{+}$, 356.0523); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3340 \mathrm{br}$ and 3260 br (NH), 1809w, $1755 \mathrm{~s}, 1743 \mathrm{~s}$ and $1722 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 3.75$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and 7.37 $(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 51.4(\mathrm{q}, \mathrm{Me}), 54.7(\mathrm{q}, \mathrm{Me})$, 64.1 (d, CHAr), 154.8 (s, CO), 156.0 (s, CO), 156.5 (s, CO), 167.6 (s, CO), 128.4 (m, Ar), 129.7 (dd, Ar), 129.8 (dt, Ar) and 136.7 (tt, Ar).

1,3-Dimethoxycarbonylamino-5-p-tolylimidazolidine-2,4-dione 6 ($\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$). Yield 75%, m.p. $171{ }^{\circ} \mathrm{C}$ (Found: C, 50.05; H, 4.55; N, 16.5\%; M ${ }^{+}$, 336.106. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires $\mathrm{C}, 50.00 ; \mathrm{H}, 4.76 ; \mathrm{N}, 16.67 ; M, 336.1069) ; v_{\max }-$ (Nujol)/ $\mathrm{cm}^{-1} 3320 \mathrm{br}$ and 3290 br (NH), 1810w, 1757s, 1734s and $1725 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.34(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.72(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $5.26(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and 7.40 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$).
N^{\prime}-Methoxycarbonyl-2-methoxy-2-p-tolylacetohydrazide $\mathbf{8}$ ($\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$).-Hydrazido pyridinium salt 2 ($\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$) (5 mmol) and NEt_{3} (5 mmol) were heated under reflux in methanol ($40 \mathrm{~cm}^{3}$) for 1 h . After evaporation of methanol ($30 \mathrm{~cm}^{3}$), the residue was diluted with water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with ether $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The extract was washed with water $\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and then evaporated. The residue was precipitated by addition of ether-light petroleum ($1: 1$). The α-methoxyhydrazide 8 was recrystallized from methanol 60%, m.p. $113^{\circ} \mathrm{C} ;^{10} v_{\text {max }}{ }^{-}$ (Nujol) $/ \mathrm{cm}^{-1} 3225 \mathrm{br}(\mathrm{NH}) ; 1743 \mathrm{~s}$ and $1661 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}+\right.$ $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.37$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $3.72(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 4.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $7.20(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.
$\mathrm{N}, \mathrm{N}^{\prime}$-Diaminohydantoins 9.- x-Halogenohydrazide 1 (5 $\mathrm{mmol})$, hydrazido pyridinium salt $2(5 \mathrm{mmol})$ and triethylamine
($2 \mathrm{~cm}^{3}$) were refluxed in acetonitrile ($50 \mathrm{~cm}^{3}$) for 4 h . After evaporation of acetonitrile ($30 \mathrm{~cm}^{3}$), the residue was diluted with water $\left(50 \mathrm{~cm}^{3}\right)$ and acidified with $\mathrm{HCl}\left(4 \mathrm{~mol} \mathrm{dm}^{-3}\right)(\mathrm{pH} 4-$ 5), then extracted with dichloromethane ($2 \times 50 \mathrm{~cm}^{3}$). The extract was washed with water $\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. N, N^{\prime}-Diaminohydantoin 9 was obtained as a solid by addition of ether and recrystallized from benzene.
3-Benzoylamino-1-methoxycarbonylamino-5-tolylimidazolid-ine-2,4-dione $9\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{COPh}\right)$. Yield 80%, m.p. $172{ }^{\circ} \mathrm{C}$ (Found: C, $59.2 ; \mathrm{H}, 4.85 ; \mathrm{N}, 14.15 \%$; M^{+}, 382.128. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $\mathrm{C}, 59.69$; $\mathrm{H}, 4.71 ; \mathrm{N}, 14.66 ; M$, 382.1277); $v_{\text {max }}$ (Nujol) $/ \mathrm{cm}^{-1} 3340 \mathrm{br}$ and 3220 br (NH), 1811w, $1750 \mathrm{~s}, 1731 \mathrm{~s}$ and $1650 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.21(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.55$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $5.45(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $7.36(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.
3-Benzoylamino-5-p-chlorophenyl-1-methoxycarbonylamino-imidazolidine-2,4-dione $9 \quad\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \quad \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}\right.$, $\mathrm{R}^{2}=\mathrm{COPh}$). Yield 58%, m.p. $161{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 53.85 ; \mathrm{H}, 3.95$; $\mathrm{Cl}, 8.7 ; \mathrm{N}, 13.5 \% ; \mathrm{M}^{+}$, 402.073. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5}$ requires $\mathrm{C}, 53.66$; $\mathrm{H}, 3.73 ; \mathrm{Cl}, 8.82 ; \mathrm{N}, 13.91 ; M, 402.0731) ; v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1}$ 3340 br and $3215 \mathrm{br}(\mathrm{NH}), 1813 \mathrm{w}, 1750 \mathrm{~s}$, 1730s and 1655 s (CO); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $7.42(9$ $\mathrm{H}, \mathrm{m}, \mathrm{Ar})$.
1-Benzoylamino-5-p-chlorophenyl-3-methoxycarbonylamino-imidazolidine-2,4-dione $9\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{COPh}, \mathrm{R}^{2}=\right.$ $\mathrm{CO}_{2} \mathrm{Me}$). Yield 50%, m.p. $148^{\circ} \mathrm{C}$ (Found: C, $53.4 ; \mathrm{H}, 3.9 ; \mathrm{Cl}, 9.0$; $\mathrm{N}, 13.75 \% ; \mathrm{M}^{+}, 402 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{5}$ requires C, $53.66 ; \mathrm{H}, 3.73$; $\mathrm{Cl}, 8.82 ; \mathrm{N}, 13.91 ; M, 402) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3280 \mathrm{br}$ and $3220 \mathrm{br}(\mathrm{NH}), 1810 \mathrm{w}, 1762 \mathrm{~s}, 1717 \mathrm{~s}$ and $1665 \mathrm{~s}(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $5.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ and $7.57(9 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$.

References

1 J. Viret, J. Gabard and A. Collet, Tctrahedron, 1987, 43, 891.
2 C. Gennari, L. Colombo and G. Bertolini, J. Am. Chem. Soc., 1986, 108, 6394.
3 D. A. Evans, T. C. Britton, R. L. Dorow and J. F. Dellaria, J. Am. Chem. Soc., 1986, 108, 6395.
4 L. A. Trimble and J. C. Vederas, J. Am. Chem. Soc., 1986, 108, 6397.
5 S. Karady, S. H. Pines, M. G. Ly, M. Sletzinger, J. E. Allegretti and A. Wildman, Merck, DE 206 2285, 1st July 1971, Ger. Offen (Chem. Abstr., 1971, 75, 118 122); S. Karady, S. H. Pines, M. G. Ly, M. Sletzinger, J. E. Allegretti and A. Wildman, Merck, DE 206 2332, 15th July 1971, Ger. Offen (Chem. Abstr., 1971, 75, 118120).
6 S. Karady, S. H. Pines, M. G. Ly and M. Sletzinger, Merck, Can. Patent CA 951 661, 23rd July 1974 (Chem. Abstr., 1975, 82, 139722).
7 C. Florac, P. Le Grel, M. Baudy-Floc'h and A. Robert, J. Chem. Soc., Perkin Trans 1, 1989, 2135.
8 I. Zugravecsu and M. Petrovanu, N- Ylide Chemistry; McGraw Hill, 1976, New York.
9 A. W. Johnson, Ylid Chemistry, Academic Press, New York, 1966.
10 F. G. Bordwell and M. W. Carlson, J. Am. Chem. Soc., 1970, 92, 3377 and references therein.
11 P. Le Grel, M. Baudy-Floc'h and A. Robert, Tetrahedron, 1988, 44, 4805.

12 P. Le Grel, M. Baudy-Floc'h and A. Robert, Synthesis, 1987, 306.
13 The deshielding of the ArCH was expected according to the literature value: E. Anders, J. G. Tropsch, A. R. Katritzky, D. Rasala and J. J. V. Eynde, J. Org. Chem., 1989, 54, 4808.

Paper 0/04967K
Received 5th November 1990
Accepted 2nd January 1991

